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The Diffraction of Electromagnetic Waves by
Dielectric Steps in Waveguides

ERLIND G. ROYER, MEMBER, IEEE, AND RA] MITTRA, FELLOW, IEEE

Abstraci—The problem of determining the scattered electromag-
netic fields when a dielectric step discontinuity is placed in a wave-
guide is considered. Although an exact method of solution is not
presently known, the recently introduced modified residue-calculus
techniqgue (MRCT) can be successfully extended to obtain a very
accurate and numerically efficient approximate solution of the semi-
infinite dielectric step. A still further extension of the modified
residue-calculus method yields the approximate solution for the case
of a finite dielectric step. A unique advantage of the present methods
is that the degree of accuracy obtained is independent of the relative
permittivity of the dielectric material and of the frequency. Thus very
high permittivities or frequencies can be considered without an
attendant increase in computational complexity. Numerical data are
presented which confirm the accuracy of the method.

INTRODUCTION

ITH the increasing use of new dielectric and

&;&/ semiconductor materials it is relevant to re-

consider the scattering problem posed by plac-
ing dielectric steps in waveguides. Previous methods,
which have achieved an approximate solution to this
problem, have employed modifications of the varia-
tional technique, a quasi-static solution of a singular
integral equation, or inversion of the coefficient matrix.
Each one of these methods necessarily makes approxi-
mations which limits the accuracy or applicability of
the particular method. The approach reported here is to
extend the recently introduced modified residue-calcu-
lus technique (MRCT) [1] to obtain a solution for di-
electric steps which is not based on the approximations
used in previous methods, and hence achieves increased
accuracy as well as numerical efficiency.

The MRCT is an extension of the conventional resi-
due-calculus technique, and is a rapidly convergent
numerical method for solving a class of infinite sets of
simultaneous linear equations. The principal advantage
of the MRCT is that for a certain class of problems it is
possible to extract the asymptotic solution exactly.
With this knowledge of the asymptotic solution, the
original problem is transformed into one that lends itself
to efficient numerical solution. This results in a reduc-
tion in matrix size by a factor of ten or more when com-
pared to the conventional mode-matching method.

In its original form, the MRCT can be applied to
geometries which are simple modifications of the Wei-
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Fig. 1. The semi-infinite dielectric step with auxiliary geometry.

ner—Hopf geometry [2]. This paper reports extensions
of the MRCT which allow the solution of a broader class
of infinite equations. In particular, the equations ob-
tained in the formulation of the semi-infinite and finite
dielectric steps in waveguides are solved by extending
the original MRCT.

FORMULATION OF THE SEMI-INFINITE-STEP PROBLEM

A direct mode-matching forniulation of the boundary-
value problem posed by the semi-infinite dielectric step
in an infinite parallel-plate waveguide [Fig. 1(a)] yields
a set of infinite equations which presently can be solved
only by direct inversion or by an iterative procedure.
The size of the matrix required by these methods to
obtain sufficient accuracy is an order of magnitude
greater than that required if the auxiliary geometry of
Fig. 1(b) is used to obtain sets of equations which can be
solved by extending the MRCT.

The auxiliary geometry is obtained by placing an
infinitely thin, perfectly conducting strip on top of the
dielectric at x=c¢ in Fig. 1(a). The strip is infinite in
extent in the y direction and extends into the loaded
guide a short distance, z=A. Note that as A—0 the
auxiliary geometry approaches that of the original prob-
lem.

For incident TE,, modes the total electromagnetic
fields can be derived from the only nonzero component
of electric field E,

1 9

H, = - — Ey
Jwte 9z
-1 4

o, = - — E,.
Jwpe 0%

(exp (jwt) time variation is assumed throughout). The
transverse electric fields in each of the four regions of
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the auxiliary geometry are known and may be written
as

Region A:
E, = A sin (prx/a) exp (—ap3)

+ i A, sin (nwx/a) exp (anz). (la)
Region B: =
E, = i sin [nx(x — ¢)/b]
n=1
| «{ B, exp (—Ba2) + Eaexp [B.(z — A)]}. (1b)
Region B':
E, = Y sin (nwx/c)
n=1
: {-En €xp (—fnz) + En €xp [f‘n(z - A)]} (1c)
Region C:
E, = Z Can €xp [""'Yn(z - A)] (1d)
n=1
where

sin (x4 va? + «ko?),

_|sin (ov/va? + kke) N
Ol Py oy Bl (G AT

0<x<¢

c<x<a

and &, Br, &, Yn, and ky are the wave numbers in re-
gions A, B, B/, C, and free space, respectively [3]. Ex-
cept for a constant factor, the transverse magnetic field
in each region is found by partial differentiation with
respect to z.

The transverse field components are matched at =0
and z=A. Fourier analyzing the resulting equations,
letting A—0, and eliminating the coefficients Bn, Bx, En,
and E,, the following expressions for the unknown mode
coefficients 4, and C, are obtained:

d 1 Am Cc.’
4 + )t |
g[ an — B’ an + B : Yn + Em
1 Am
- A’( + ) 2
Qp + ,Bm’ Ay — ,Bm, ( a)
i 1 Am C)
4 ( + )t |
E[‘ (473 + ﬁm, Xy — ﬁm, +E 'Yn—.{-‘m
_ A'( 1 4 Am ) (2b)
&y — ,Bml (297 + ,Bm,
bl A o A’
_l.. ) = 2c
nz=i(an_ﬁm 'Yn+ﬂm Ofp-l"ﬁm ( )
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=

n=1

Anl + Cnl > _ 7
an+;8m 7n_.3m ap'—ﬂm

where, to simplify the above expressions, the following
definitions have been made:

Bu' = Vin?+ (k — Dke? = v/ (mw/c)* — ko?

_ Ba' — &m

" B+ im

— ZBm,

B+ fm

A'=4 sin (pme/a), A/ =4, sin (nwc/a), and C,’

=C, sin (cVv.2+«ks). These equations are valid for
eachm=1,2,3,---.

(2d)

m

ém

SOLUTION OF THE SET OF EQUATIONS

The form of the above infinite sets of simultaneous
linear equations differs significantly from those previ-
ously solved by the MRCT. However, by modifying
certain steps in the original procedure, we are able to
extend the MRCT to the above equations and obtain a
very accurate approximate solution for the unknown
modal coefficients 4, and C,.

Since the intent is to extend the original MRCT, our
development is guided by the original procedure. The
key step is the construction of a meromorphic function
f(w) with the following properties:

(f:1) f(w)hassimple poles at w = an, andatw = —7v,,
n=1,2,3:-;als0at w = — ay,

(f:2) f(£8.) =0, n=1,2,3--",

(f:3)  f(B:") + Naf(—84")

[0 - Ri-a) (

+ gRI(ai) (ai i §'n>:|

imal i — B’

Ay + g‘n>

=0’ ’ﬂ=1,2,3,"',
) (f'4) f(_Bnl) ‘+‘ Anf(Bnl)

+ &, [f(—in) ~ Ri(=) (ap i §n>
+ B R ()]

i 1 An
el
; A=) vi— B’ v+ B

=O’) n=1’2’3’=.‘.,
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(f:5) flw) ~ Kw™ as l wl — o where v > 11is given
by a physical constraint, the edge condition,

(f: 6) the residue of f(w) at w = — o, is equal to 4’,

Properties (f:3) and (f:4) are the significant difference
between this work and the original MRCT,

Assuming such a function f(w) can be constructed,
consider the following contour integrals in the complex
w plane:

1

— f [ f@) + Am f) + én J) j|dw,

2m5J ¢ Lw — Bu’ w + B’ W= {m
m=1,2,3---

1 f

_f[ f(w) N J(w) ;. (w) :|dw,

2ajJ ¢ Lw + Ba' W — Bm’ Wt m
m=1,2,3,---

1

— UC) dw, m=1,2,3,--

27l'j C‘w_ﬂm .

1

— U dw, m=1,2,3,---

27!'] Cw+6m

where the contour C is a circle of infinite radius enclos-
ing all the poles and zeros of f(w). The values of the inte-
grals can be shown to be zero by (f:5). Applying the
residue theorem together with (f:1)~(f:4) one obtains

0

215

where

I @, ¢) = ﬁ(l - fw,) exp (cw/nm)

n=1 n

1 (e, =) = T (1 +) exp (—cu/nm)

ne=1 Nn

and similarly for [] (w, ), I (w, 8), and II (@, —v).
The normalization constant K; is chosen to satisfy
(f:6). The sets of zeros {{n'} and { —n.} are unknown
and must be found.

In the original MRCT it was possible to determine
the asymptotic behavior of these unknown sets of zeros,
then explicitly determine a finite subset of the zeros, and
use the known asymptotic expressions for the remain-
der. However, because of the infinite series appearing in
(f:3) and (f:4), this procedure cannot be used in this
case. In the original MRCT, the unknown zeros were
found to be shifted a slight amount from sets of known
zeros. This suggests the use of a perturbation function
to add corrections for the shifted zeros to the product
representation of the unshifted zeros. Such a function is
given by

H(w) = I (,8) I (w, =8 [1 + é? <Bw_ w)

P2 e

E{Rf(an) [0‘" —1 B’ - an" j‘mﬁm'jl ~ Ee(=ma) L’n j‘ fm]} = Rrl=ew) |:0(p -: B + ay i\—m,&n'] =0 (32)
FYR TS I SV S St
; {Rf (o) [an i 5m] — Ri(—~.) [’yn j_ ,B,J} — Ri(—ay) [;;‘_I_l—ﬁi =0 (30)
S v [ | = Rt [}~ R [ =0 6o

for m=1, 2, 3,‘ -+ +. By comparing (3a)-(3d) with
(2a)—(2d), it is apparent that the solution to the latter
sets of equations is given by

4. = Rf(an),
¢/ = — Rf(_'Yn)’

n =

172:37"'7
1,2,3, .

n =

CONSTRUCTION OF f(w)

Following the reasoning of the original MRCT we are
led to write f(w) as

f(w) = K esp (Lw)

. H(w: ﬁ)H(w? _B)H(wy g‘,)H(‘wa "_77)
(w + ap) II (@, &) IT (@, =)

(4)

where {B.'} and {—pB.'} are the unshifted zeros. The
unknown coefficients {S,} and {T.} are the perturba-
tion coefficients to account for the shift in {8’} and
{—B.'} to {¢.'} and {—n.}, respectively. Note that
H(w) has been chosen such that H(B.') =KS. and
H(—Bn)=—KT, for m=1, 2, 3, - -+, where K is a
constant. Also, when w equals zero, H(0)=1, so the
essential characteristics of f(w) are maintained.

It would appear that the use of H(w) has not im-
proved the procedure, since it is now necessary to deter-
mine two infinite sets of coefficients, where previously
two infinite sets of zeros were unknown. However, now
the asymptotic behavior of the coefficients {S.} and
{T.} can be determined, whereas before we could not
determine the behavior of the zeros.
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To this end, substitute (5) for [] (w, &) 11 w, —n)
in (4), let w= +8,’ as m— «, use asymptotic values for
the known poles and zeros, and require the satisfaction
of condition (f:5). After simplifying, the asymptotic
behavior as m— c is obtained as

Sm ~ ml—v
(6)

Tm ~ ml—-v

where the value

L+ 2 1|: k—1 :l
= —cos! | ———
T 2(k + 1)
is known as the edge condition for a right-angle dielec-
tric wedge [4]. It can also be shown that if (6) is true

then
flom) ~ Ko™

f(—=m) ~ Kym™

for m— o as specifically required by the edge condition.
Knowing the required asymptotic behavior of the
perturbation coefficients, it is now possible to rewrite

H(w) as
A = T @) T - [ 1+ 50 (55)
+Sn§aﬂn ——w+ tbé T (ﬁn +w>

Z nl——v
+T 5
n=N}p ﬂn + w

where S and T are unknown coefficients which account
for all the zeros of order equal to or greater than N, and
N, respectively. Note that the asymptotic behavior of
these higher order coefficients is displayed as n'~* and
summed.

The original scattering problem has now been trans-
formed into one of finding the unknowns {S.}, S, { 7%},
and 7. By using (7) for H(w) in (4), and then imposing
(f:3) and (f:4), a set of N= N,+ N, linear simultaneous
equations for the N unknown perturbation coefficients
is obtained. The infinite series which appear in the ex-
pressions pose no significant numerical problems. The
series are convergent and can be accurately summed
very quickly using appropriate numerical techniques.
The solution of this set of linear equations for the un-
known perturbation coefficients is readily accomplished.
After determining K; from (f:6) the construction of
f(w) is complete.

The need to solve this rather complex set of equations
might lead one to question the advantage of extending
the MRCT. In practice, as with previous applications of
the MRCT, the number of equations which must be
solved is quite small compared to the number required
by other methods. Usually N =10 or less gives very good
results.

™
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NUMERICAL RESULTS FOR THE SEMI-INFINITE STEP

The satisfaction of the equations for the perturbation
coefficients serves as a test of the convergence of the
numerical calculations. Satisfaction of these equations
for n=1, 2, 3, , N also is a measure of how well
conditions (f:3) and (f:4) on f(w) are met. The satis-
faction of the equations, and thus the convergence of
the process of calculating the perturbation coefficients,
is illustrated by Table I for a typical case.

Table I shows an example for N=10 and N,=N,. [t
was found that the final numerical results were insensi-
tive to the ratio N,/Ns. Therefore, in all the numerical
work which follows, N, was set equal to N,. The choice
N =10 was found to give very accurate results. How-
ever, good results were obtained by taking N as few as
four.

Of considerable interest in a waveguide discontinuity
problem, which has been formulated using the field
continuity conditions at some interface, is the satisfac-
tion of these conditions by the numerical results. Also
significant in the case of a lossless discontinuity, such as
the dielectric step, is the principle of conservation of
energy. Consequently, if one defines error criteria based
on these fundamental concepts, the criteria so defined
may be used to assess the accuracy of the numerical
techniques. The mean-square errors in the tangential
fields at the 2=0 interface are defined as

f f l Ejt —
Aperture
f f l Eyinc l2 d A
Aperture

ff | B+t — H-|2dA
Aperture

en = (8)
f f l H jire ]2 dA
Aperture

where E,* and H,* are the tangential fields at z=0% in
the C region of the guide, E,~ and H,~ are taken at
z=0"in the 4 region, and E,* and H.!"* are the com-
ponents of the incident wave at =0". The conserva-
tion of energy may be evaluated from the expression

E;|2dA

€g =

1 P, + P, ©)
ep=1—-——-
P P,

where P;, P,, and P, are the incident, reflected, and
transmitted powers, respectively [5].

In this extension of the MRCT the reflection and
transmission coefficients are independently determined
directly from f(w) by simultaneous calculations. There-
fore, the parameters €g, €x, €p defined in (8) and (9) are a
valid measure of the accuracy of the solution. Typical
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TABLE 1
CoNVERGENCE CHECK FOR N,=N; =35
(Ao=1.63a, c/a=0.201, x=9.91)

n  Residual Value of Equations (f: 3) and (f: 4)
1 (—0.508-+70.697) X 10~
2 (—0.289-+50,211) X 10~%
3 (—0.417+50.153) X 10738
4 (—0.342+450.174) X10™18
5 (0.820—;0.631) X 10~
6 (0.363+50.498) X 10~¥
7 (0.862-+4;0.071) 1018
8 (—0.091+470.116) 1018
9 (0.572—50.172) X 10-1¢
10 (—0.155+50.074) X108
TABLE I1I
ACCURACY OF THE TECHNIQUE
Mean Square Errors
Energy Parameter
ep 52 €
(\o=1.63a, ¢/a=0.101, k=9.91)

4 0.485X10~* 0.153 X107 0.141X107¢
10 0.343x10-5 0.119x10-¢ 0.106X10-5
16 0.973X10-¢ 0.119X107¢ 0.106X10-3

(A0=1.2369a, c/a=0.2756, k=2.47)

4 0.131X10-2 0.989X10-% 0.199X10~4

8 0.175X10-3 0.252X10-¢ 0.483X1078
16 0.228X10~* 0.134X10°¢ 0.247X10°¢,

values of ep, €z, and ex are given in Table II as a function
of N.

As additional verification, solutions for ¢/a=1 were
obtained for several values of the dielectric constant.
The calculated modal coefficients agreed in both magni-
tude and phase to & 2 in the fourth significant digit with
the well-known exact solution. Further limiting cases
are not practical. For example, the equations obtained
as k— o can be solved more efficiently by direct applica-
tion of the MRCT [2].

One of the thoughts which motivated this study was a
concern that previous methods of solving the dielectric
step would prove to be inaccurate when applied to the
high dielectric constants in use today. Earlier methods
have calculated only the first, or at best, the first few
mode coefficients. Hence, the accuracy of these methods
is critically dependent on the amplitudes of the higher
order modes decreasing rapidly. The calculations of this
study confirmed the relatively slow rate of decreasein
the magnitudes of the reflected mode coefficients for
high dielectric constants. However, when one utilizes
the extended MRCT to obtain a solution, the significant
part of the numerical work is the computation of the
perturbation coefficients which determine f(w). Once
f(w) is determined the calculation of any number of
mode coefficients is easily accomplished by computing
the appropriate residues. Thus the MRCT can readily
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Fig. 2. Reflection coeflicient for the

semi-infinite step (A\o=0.256¢a, x=2.56).

provide a very accurate approximation to the field con-
figuration with little concern for the number of modes
required to obtain the desired accuracy.

A final example of the computations which may be
carried out with the extended MRCT is illustrated in
Fig. 2. The break in the curves at x220.456 occurs at the
point where two modes begin to propagate in the par-
tially loaded guide. This ability to accurately handle
more than one propagating mode without an increase in
computational complexity is an important feature of the
MRCT. In these calculations, which solved six simul-
taneous equations, a check of the field continuity at the
z =0 interface for each computed point of the curve re-
vealed a match to +1 in the third significant digit.

FORMULATION OF THE FINITE DIELECTRIC
STEP PROBLEM

The solution of the finite-step problem, which is of
considerable practical interest, is carried out in a similar
manner. The finité step is formed by truncating the
dielectric of Fig. 1(a) at a length z =d. To formulate the
problem we exploit the symmetry of the finite step
about the z =d/2 plane by the usual method of consider-
ing auxiliary even and odd excitations. For even excita-
tions a magnetic wall at z=d/2 has no effect. Likewise,
an electric wall may be placed at this plane in the odd
excitation case. If both excitations are applied simul-
taneously, they add for z <0 and cancel for z >0, leaving
the desired TE,, excitation which was used previously.
Hence, superposition of the solutions to the auxiliary
problems depicted in Fig. 3(a) will lead to the solution
of the finite dielectric step where the wall at s=d/2 is
magnetic or electric as the excitation is even or odd,
respectively.
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Again it is convenient to consider the auxiliary geome-
try shown in Fig. 3(b) which coincides with Fig. 3(a) as
A—0. The mode-matching and limiting procedures used
previously result in the following equations, extensions
of (2), which must be solved:
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IT (e, 8) T1 G, —8) 11 G, 8) 11 (a0, =87
(1 + ) I o, TL 0, ~ )

No—1
.[1+ > S,,(E——,w >
n=1 n T W
© l—»
+35 X w(ﬁ——ln )
n=Ngqg n — W
_|_
n=1 (ﬁ +'w> ngl—\’:b
#5n(5)]
n=1 Yn — W

where the {S.}, {T.}, S, and T are the perturbation
coefficients previously defined. The asymptotic behavior
of the newly introduced unknown coefficients { Va },
whose use was suggested by Itoh and Mittra [7], can be
determined a priors. It can be shown that V,~#n=1=" exp
(—mnwd/2a) as n— . Thus the series containing V, in
(11) can be truncated at a few terms, say M, with negli-
gible error.

The unknown coefficients in 4 (w) are determined from

h(‘ZU) = K,

nl—v
(ﬁn + w>

(11)

i 1 Am
> [An'( + ) + &aCo’
(7%

n=1 — B o+ B (vn + rm - s“m>] s <a,, i b a im Bm,> (10a)
g [A"’ <a,, Ji o e im 5,,/) + &G <yni PRI fm)] = A'(% _1 PRA i\rm ﬁm,> (10b)
nﬁ; [Z:A—ib; o (vn e 5,,,)] T il o (100)
né [;nifgn—» o ('Yn - ﬁm Ve + Bm)] — B (10d)

where m =1, 2, 3, - - -

These equations differ from the previous ones for the
semi-infinite step by virtue of the terms containing Z,,
which is given by exp (—v.d/2). The unknowns {An}
and {C,} correspond to the scattering coefficients in
regions 4 and C of Fig. 3(a), respectively. The above
equations are for the electric-wall case. To obtain the
magnetic-wall equations, the sign of £, must be reversed.

The solution of (10) entails a further extension of the
extended MRCT. Following a development analogous
to that used previously, we consider a function k(w)
similar to f(w). The details of the construction of %(w)
will not be given, as they are readily available [6]. As
before, the unknowns {A4,.} and {C,} will be given by
appropriate residues of h(w). The expression for z(w)
can be shown to be

conditions similar to (f:3) and (f:4) together with an
additional restraint which must be imposed on the resi-
dues of A(w). The resulting set of N--M simultaneous
linear equations is then solved once for the electric-wall
case and again for the magnetic-wall case. The majority
of the numerical calculations need not be repeated, how-
ever, so the method is numerically efficient. The result-
ing scattering coefficients for the two auxiliary problems
are then combined to yield the total reflected and trans-
mitted fields for the finite step.

NUMERICAL RESULTS FOR THE FINITE STEP

This further extension of the extended MRCT gives
numerical results comparable in accuracy to those ob-
tained for the semi-infinite dielectric step. The numerical
procedure for the calculation of the unknown coefficients
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TABLE III
ACCURACY OF THE SOLUTION OF THE FINITE DIELECTRIC STEP
(Mo=1.24a, ¢/a=0.101, k=6.73, d=2)

Electric Wall Case

Energy Parameter: Mean Square Errors

N M €p 3 34

4 1 —0.273x1073 0.370X10~2 0.182X102
10 4 —0.176X104 0.430% 1076 0.622X10-¢
16 4 —0.554X10-% 0.432X10°¢ 0.599X10-¢

Magnetic Wall Case

Energy Parameter . Mean Square Errors

M 53 €R ex
4 1 —0.654X 10 0.242X10~2 0.109X%10-3
10 4 ~0.127X10* 0.323%10°% 0.264 X105
16 4 —0.401%X10°® 0.264 X105

0.324X10-%
Total Solution '

Energy Parameter

N M ep

4 1 0.104%103
10 4 —0.152x10-%
16 4 —0.478% 105

in the function A(w) exhibited convergence properties
equivalent to those previously obtained.

The tangential field match was checked for each case
that was investigated. Some typical results, as mea-
sured by the mean-square error in the tangential field
match, are presented in Table III. The energy parame-
ter for the final solution is also presented. A point-by-
point direct matching of the magnitudes of the tan-
gential electromagnetic fields revealed a match to three
significant digits for N=16 and N =10, with M =4 for
both the electric- and magnetic-wall cases. For N=4
and M =2 the fields matched to + 3 in the second sig-
nificant digit. With N =10, choosing M =2 rather than
M =4 had negligible effect on the accuracy of the results.
This was expected because of the exponential behavior
of the coefficients V,. The choice of N=10 and M =2
was found to provide the best compromise between
minimum computation time and optimum accuracy.
~ The result of varying the thickness of the dielectric
while maintaining a given permittivity and step length
is shown in Fig. 4. The increased reflection at ¢/a=20.15
had a counterpart in the semi-infinite dielectric step
(Fig. 2) and corresponds to the beginning of double-
mode propagation in the dielectric-filled waveguide.
The explanation for the return to a small reflection
coefficient for 0.20<¢/a <0.25 undoubtedly lies in the
particular configuration of the propagating fields and
the resultant coupling through the finite step.

CONCLUSIONS

The extensions of the MRCT reported here provide
very accurate solutions to the equations obtained for the
dielectric-step problems, even when the permittivity or
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Fig. 4. Reflection and transmission coefficients versus step height
for the finite step (N\o=1.5376a, x=6.73, d=2\,).

frequency becomes very large. The method is numeri-
cally efficient as matrix size is typically reduced by a
factor of 10 compared to previous methods. The con-
vergence of the solution is easily confirmed. An addi-
tional significant advantage is that the uniqueness is a
priori guaranteed by requiring the satisfaction of the
edge condition as a step in the procedure.
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